Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 236, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561660

RESUMO

BACKGROUND: Acyl-CoA-Binding proteins (ACBPs) function as coenzyme A transporters and play important roles in regulating plant growth and development in response to abiotic stress and phytohormones, as well as in membrane repair. To date, the ACBP family has not been a comprehensively characterized in barley (Hordeum vulgare L.). RESULTS: Eight ACBP genes were identified in the barley genome and named as HvACBP1-8. The analysis of the proteins structure and promoter elements of HvACBP suggested its potential functions in plant growth, development, and stress response. These HvACBPs are expressed in specific tissues and organs following induction by abiotic stressors such as drought, salinity, UV-B exposure, temperature extremes, and exposure to exogenous phytohormones. The HvACBP7 and HvACBP8 amino acid sequences were conserved during the domestication of Tibetan Qingke barley. CONCLUSIONS: Acyl-CoA-binding proteins may play important roles in barley growth and environmental adaptation. This study provides foundation for further analyses of the biological functions of HvACBPs in the barley stress response.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Reguladores de Crescimento de Plantas , Hormônios , Estresse Fisiológico/genética
2.
Nat Commun ; 14(1): 7599, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989752

RESUMO

Nutrient availability is a major selective force in the evolution of metazoa, and thus plasticity in tissue function and morphology is shaped by adaptive responses to nutrient changes. Utilizing Drosophila, we reveal that distinct calibration of acyl-CoA metabolism, mediated by Acbp6 (Acyl-CoA binding-protein 6), is critical for nutrient-dependent tissue plasticity. Drosophila Acbp6, which arose by evolutionary duplication and binds acyl-CoA to tune acetyl-CoA metabolism, is required for intestinal resizing after nutrient deprivation through activating intestinal stem cell proliferation from quiescence. Disruption of acyl-CoA metabolism by Acbp6 attenuation drives aberrant 'switching' of metabolic networks in intestinal enterocytes during nutrient adaptation, impairing acetyl-CoA metabolism and acetylation amid intestinal resizing. We also identified STAT92e, whose function is influenced by acetyl-CoA levels, as a key regulator of acyl-CoA and nutrient-dependent changes in stem cell activation. These findings define a regulatory mechanism, shaped by acyl-CoA metabolism, that adjusts proliferative homeostasis to coordinately regulate tissue plasticity during nutrient adaptation.


Assuntos
Inibidor da Ligação a Diazepam , Drosophila , Animais , Acetilcoenzima A/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Drosophila/metabolismo , Acil Coenzima A/metabolismo , Ligação Proteica
3.
ASN Neuro ; 15: 17590914231214116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38031405

RESUMO

Pharmacological stimulation/antagonism of astrocyte glio-peptide octadecaneuropeptide signaling alters ventromedial hypothalamic nucleus (VMN) counterregulatory γ-aminobutyric acid (GABA) and nitric oxide transmission. The current research used newly developed capillary zone electrophoresis-mass spectrometry methods to investigate hypoglycemia effects on VMN octadecaneuropeptide content, along with gene knockdown tools to determine if octadecaneuropeptide signaling regulates these transmitters during eu- and/or hypoglycemia. Hypoglycemia caused dissimilar adjustments in the octadecaneuropeptide precursor, i.e., diazepam-binding-inhibitor and octadecaneuropeptide levels in dorsomedial versus ventrolateral VMN. Intra-VMN diazepam-binding-inhibitor siRNA administration decreased baseline 67 and 65 kDa glutamate decarboxylase mRNA levels in GABAergic neurons laser-microdissected from each location, but only affected hypoglycemic transcript expression in ventrolateral VMN. This knockdown therapy imposed dissimilar effects on eu- and hypoglycemic glucokinase and 5'-AMP-activated protein kinase-alpha1 (AMPKα1) and -alpha2 (AMPKα2) gene profiles in dorsomedial versus ventrolateral GABAergic neurons. Diazepam-binding-inhibitor gene silencing up-regulated baseline (dorsomedial) or hypoglycemic (ventrolateral) nitrergic neuron neuronal nitric oxide synthase mRNA profiles. Baseline nitrergic cell glucokinase mRNA was up- (ventrolateral) or down- (dorsomedial) regulated by diazepam-binding-inhibitor siRNA, but knockdown enhanced hypoglycemic profiles in both sites. Nitrergic nerve cell AMPKα1 and -α2 transcripts exhibited division-specific responses to this genetic manipulation during eu- and hypoglycemia. Results document the utility of capillary zone electrophoresis-mass spectrometric tools for quantification of ODN in small-volume brain tissue samples. Data show that hypoglycemia has dissimilar effects on ODN signaling in the two major neuroanatomical divisions of the VMN and that this glio-peptide imposes differential control of glucose-regulatory neurotransmission in the VMNdm versus VMNvl during eu- and hypoglycemia.


Assuntos
Glucose , Hipoglicemia , Ratos , Animais , Glucose/metabolismo , Núcleo Hipotalâmico Ventromedial , Hipoglicemiantes/farmacologia , Hipoglicemiantes/metabolismo , Ratos Sprague-Dawley , Inibidor da Ligação a Diazepam/metabolismo , Inibidor da Ligação a Diazepam/farmacologia , Glucoquinase/metabolismo , Glucoquinase/farmacologia , Glicogênio/metabolismo , Hipoglicemia/genética , Hipoglicemia/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Diazepam/metabolismo , Diazepam/farmacologia
4.
Biochemistry ; 62(20): 2982-2996, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37788430

RESUMO

Paralogous proteins confer enhanced fitness to organisms via complex sequence-conformation codes that shape functional divergence, specialization, or promiscuity. Here, we dissect the underlying mechanism of promiscuous binding versus partial subfunctionalization in paralogues by studying structurally identical acyl-CoA binding proteins (ACBPs) from Plasmodium falciparum that serve as promising drug targets due to their high expression during the protozoan proliferative phase. Combining spectroscopic measurements, solution NMR, SPR, and simulations on two of the paralogues, A16 and A749, we show that minor sequence differences shape nearly every local and global conformational feature. A749 displays a broader and heterogeneous native ensemble, weaker thermodynamic coupling and cooperativity, enhanced fluctuations, and a larger binding pocket volume compared to A16. Site-specific tryptophan probes signal a graded reduction in the sampling of substates in the holo form, which is particularly apparent in A749. The paralogues exhibit a spectrum of binding affinities to different acyl-CoAs with A749, the more promiscuous and hence the likely ancestor, binding 1000-fold stronger to lauroyl-CoA under physiological conditions. We thus demonstrate how minor sequence changes modulate the extent of long-range interactions and dynamics, effectively contributing to the molecular evolution of contrasting functional repertoires in paralogues.


Assuntos
Inibidor da Ligação a Diazepam , Proteínas , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/química , Inibidor da Ligação a Diazepam/metabolismo , Proteínas/metabolismo , Conformação Molecular , Acil Coenzima A/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
5.
Aging Cell ; 22(9): e13910, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357988

RESUMO

Acyl coenzyme A binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is a phylogenetically ancient protein present in some eubacteria and the entire eukaryotic radiation. In several eukaryotic phyla, ACBP/DBI transcends its intracellular function in fatty acid metabolism because it can be released into the extracellular space. This ACBP/DBI secretion usually occurs in response to nutrient scarcity through an autophagy-dependent pathway. ACBP/DBI and its peptide fragments then act on a range of distinct receptors that diverge among phyla, namely metabotropic G protein-coupled receptor in yeast (and likely in the mammalian central nervous system), a histidine receptor kinase in slime molds, and ionotropic gamma-aminobutyric acid (GABA)A receptors in mammals. Genetic or antibody-mediated inhibition of ACBP/DBI orthologs interferes with nutrient stress-induced adaptations such as sporulation or increased food intake in multiple species, as it enhances lifespan or healthspan in yeast, plant leaves, nematodes, and multiple mouse models. These lifespan and healthspan-extending effects of ACBP/DBI suppression are coupled to the induction of autophagy. Altogether, it appears that neutralization of extracellular ACBP/DBI results in "autophagy checkpoint inhibition" to unleash the anti-aging potential of autophagy. Of note, in humans, ACBP/DBI levels increase in various tissues, as well as in the plasma, in the context of aging, obesity, uncontrolled infection or cardiovascular, inflammatory, neurodegenerative, and malignant diseases.


Assuntos
Proteínas de Transporte , Inibidor da Ligação a Diazepam , Animais , Humanos , Camundongos , Acil Coenzima A/metabolismo , Envelhecimento , Autofagia , Inibidor da Ligação a Diazepam/metabolismo , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Genes (Basel) ; 14(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37107617

RESUMO

Members of the acyl-CoA-binding protein (ACBP) gene family play vital roles in diverse processes related to lipid metabolism, growth and development, and environmental response. Plant ACBP genes have been well-studied in a variety of species including Arabidopsis, soybean, rice and maize. However, the identification and functions of ACBP genes in cotton remain to be elucidated. In this study, a total of 11 GaACBP, 12 GrACBP, 20 GbACBP, and 19 GhACBP genes were identified in the genomes of Gossypium arboreum, Gossypium raimondii, Gossypium babardense, and Gossypium hirsutum, respectively, and grouped into four clades. Forty-nine duplicated gene pairs were identified in Gossypium ACBP genes, and almost all of which have undergone purifying selection during the long evolutionary process. In addition, expression analyses showed that most of the GhACBP genes were highly expressed in the developing embryos. Furthermore, GhACBP1 and GhACBP2 were induced by salt and drought stress based on a real-time quantitative PCR (RT-qPCR) assay, indicating that these genes may play an important role in salt- and drought-stress tolerance. This study will provide a basic resource for further functional analysis of the ACBP gene family in cotton.


Assuntos
Inibidor da Ligação a Diazepam , Gossypium , Gossypium/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Genes de Plantas , Estresse Fisiológico/genética
7.
Cell Death Dis ; 14(4): 296, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120445

RESUMO

The diffuse nature of Glioblastoma (GBM) tumors poses a challenge to current therapeutic options. We have previously shown that Acyl-CoA Binding Protein (ACBP, also known as DBI) regulates lipid metabolism in GBM cells, favoring fatty acid oxidation (FAO). Here we show that ACBP downregulation results in wide transcriptional changes affecting invasion-related genes. In vivo experiments using patient-derived xenografts combined with in vitro models demonstrated that ACBP sustains GBM invasion via binding to fatty acyl-CoAs. Blocking FAO mimics ACBPKD-induced immobility, a cellular phenotype that can be rescued by increasing FAO rates. Further investigation into ACBP-downstream pathways served to identify Integrin beta-1, a gene downregulated upon inhibition of either ACBP expression or FAO rates, as a mediator for ACBP's role in GBM invasion. Altogether, our findings highlight a role for FAO in GBM invasion and reveal ACBP as a therapeutic vulnerability to stall FAO and subsequent cell invasion in GBM tumors.


Assuntos
Proteínas de Transporte , Glioblastoma , Humanos , Proteínas de Transporte/metabolismo , Glioblastoma/genética , Inibidor da Ligação a Diazepam/metabolismo , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo
8.
Autophagy ; 19(7): 2166-2169, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36579946

RESUMO

DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein) is a phylogenetically conserved paracrine inhibitor of macroautophagy/autophagy. As such, DBI/ACBP acts as a pro-aging molecule. Indeed, we observed that the knockout of ACB1 (the yeast equivalent of human DBI/ACBP) induces autophagy and prolongs lifespan in an autophagy-dependent fashion in chronological lifespan experiments. Intriguingly, circulating DBI/ACBP protein augments with age in humans, and this increase occurs independently from the known correlation of DBI/ACBP with body mass index (BMI). A supraphysiological DBI/ACBP level announces future cardiovascular disease (such as heart surgery, myocardial infarction and stroke) in still healthy individuals, suggesting that, beyond its correlation with chronological age, DBI/ACBP is a biomarker of biological age. Plasma DBI/ACBP concentrations correlate with triglycerides and anticorrelate with high-density lipoprotein. Of note, these associations with cardiovascular risk factors are independent from age and BMI in a multivariate regression model. In mice, we found that antibody-mediated neutralization of DBI/ACBP reduces signs of anthracycline-accelerated cardiac aging including the upregulation of the senescence marker CDKN2A/p16 (cyclin dependent kinase inhibitor 2A) and the functional decline of the heart. In conclusion, it appears that extracellular DBI/ACBP can be targeted to combat age-associated cardiovascular disease.Abbreviations: BMI: body mass index; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CVD: cardiovascular disease; DBI/ACBP: diazepam binding inhibitor, acyl-CoA binding protein; ELISA: enzyme-linked immunosorbent assay; GABA: gamma-aminobutyric acid; GABR: gamma-aminobutyric acid type A receptor.


Assuntos
Doenças Cardiovasculares , Inibidor p16 de Quinase Dependente de Ciclina , Humanos , Camundongos , Animais , Sequência de Bases , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Proteínas de Transporte/metabolismo , Autofagia , Envelhecimento , Ácido gama-Aminobutírico
9.
Aging Cell ; 22(1): e13751, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510662

RESUMO

Autophagy defects accelerate aging, while stimulation of autophagy decelerates aging. Acyl-coenzyme A binding protein (ACBP), which is encoded by a diazepam-binding inhibitor (DBI), acts as an extracellular feedback regulator of autophagy. As shown here, knockout of the gene coding for the yeast orthologue of ACBP/DBI (ACB1) improves chronological aging, and this effect is reversed by knockout of essential autophagy genes (ATG5, ATG7) but less so by knockout of an essential mitophagy gene (ATG32). In humans, ACBP/DBI levels independently correlate with body mass index (BMI) as well as with chronological age. In still-healthy individuals, we find that high ACBP/DBI levels correlate with future cardiovascular events (such as heart surgery, myocardial infarction, and stroke), an association that is independent of BMI and chronological age, suggesting that ACBP/DBI is indeed a biomarker of "biological" aging. Concurringly, ACBP/DBI plasma concentrations correlate with established cardiovascular risk factors (fasting glucose levels, systolic blood pressure, total free cholesterol, triglycerides), but are inversely correlated with atheroprotective high-density lipoprotein (HDL). In mice, neutralization of ACBP/DBI through a monoclonal antibody attenuates anthracycline-induced cardiotoxicity, which is a model of accelerated heart aging. In conclusion, plasma elevation of ACBP/DBI constitutes a novel biomarker of chronological aging and facets of biological aging with a prognostic value in cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Proteínas de Transporte , Animais , Humanos , Camundongos , Doenças Cardiovasculares/genética , Coenzima A/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Proteínas Nucleares/metabolismo
10.
J Neuroendocrinol ; 34(12): e13218, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36471907

RESUMO

Acyl-CoA binding protein (ACBP), also known as diazepam binding inhibitor (DBI), has recently emerged as a hypothalamic and brainstem gliopeptide regulating energy balance. Previous work has shown that the ACBP-derived octadecaneuropeptide exerts strong anorectic action via proopiomelanocortin (POMC) neuron activation and the melanocortin-4 receptor. Importantly, targeted ACBP loss-of-function in astrocytes promotes hyperphagia and diet-induced obesity while its overexpression in arcuate astrocytes reduces feeding and body weight. Despite this knowledge, the role of astroglial ACBP in adaptive feeding and metabolic responses to acute metabolic challenges has not been investigated. Using different paradigms, we found that ACBP deletion in glial fibrillary acidic protein (GFAP)-positive astrocytes does not affect weight loss when obese male mice are transitioned from a high fat diet to a chow diet, nor metabolic parameters in mice fed with a normal chow diet (e.g., energy expenditure, body temperature) during fasting, cold exposure and at thermoneutrality. In contrast, astroglial ACBP deletion impairs meal pattern and feeding responses during refeeding after a fast and during cold exposure, thereby showing that ACBP is required to stimulate feeding in states of increased energy demand. These findings challenge the general view that astroglial ACBP exerts anorectic effects and suggest that regulation of feeding by ACBP is dependent on metabolic status.


Assuntos
Depressores do Apetite , Inibidor da Ligação a Diazepam , Metabolismo Energético , Animais , Masculino , Camundongos , Astrócitos/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Metabolismo Energético/fisiologia , Hiperfagia/metabolismo
11.
Neuron ; 110(19): 3056-3058, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36202087

RESUMO

Earlier work has implicated the neurotransmitter GABA in controlling forebrain progenitor proliferation. In this issue of Neuron, Everlien et al. (2022) demonstrate that diazepam binding inhibitor acts to keep the neurogenesis-promoting effect of GABA at bay.


Assuntos
Inibidor da Ligação a Diazepam , Neurogênese , Diazepam/metabolismo , Diazepam/farmacologia , Inibidor da Ligação a Diazepam/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(41): e2207344119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191214

RESUMO

Acyl-coenzyme A (CoA)-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducible Acbp/Dbi knockout or a constitutive Gabrg2F77I mutation that abolishes ACBP/DBI binding to the GABAA receptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout of Atg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.


Assuntos
Inibidor da Ligação a Diazepam , Receptores de GABA-A , Animais , Camundongos , Acetaminofen , Anticorpos Monoclonais/metabolismo , Antioxidantes , Autoanticorpos/metabolismo , Autofagia , Tetracloreto de Carbono , Proteínas de Transporte/genética , Colina , Coenzima A/metabolismo , Concanavalina A/metabolismo , Diazepam , Inibidor da Ligação a Diazepam/metabolismo , Ácidos Graxos/metabolismo , Fibrose , Inflamação , Metionina
13.
Neuron ; 110(19): 3139-3153.e6, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35998632

RESUMO

Of the neurotransmitters that influence neurogenesis, gamma-aminobutyric acid (GABA) plays an outstanding role, and GABA receptors support non-synaptic signaling in progenitors and migrating neurons. Here, we report that expression levels of diazepam binding inhibitor (DBI), an endozepine that modulates GABA signaling, regulate embryonic neurogenesis, affecting the long-term outcome regarding the number of neurons in the postnatal mouse brain. We demonstrate that DBI is highly expressed in radial glia and intermediate progenitor cells in the germinal zones of the embryonic mouse brain that give rise to excitatory and inhibitory cells. The mechanism by which DBI controls neurogenesis involves its action as a negative allosteric modulator of GABA-induced currents on progenitor cells that express GABAA receptors containing γ2 subunits. DBI's modulatory effect parallels that of GABAA-receptor-mediating signaling in these cells in the proliferative areas, reflecting the tight control that DBI exerts on embryonic neurogenesis.


Assuntos
Inibidor da Ligação a Diazepam , Receptores de GABA-A , Animais , Diazepam/farmacologia , Inibidor da Ligação a Diazepam/metabolismo , Desenvolvimento Embrionário , Camundongos , Neurogênese , Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
FEBS Lett ; 596(14): 1795-1808, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35658118

RESUMO

Mitochondria are involved in many cellular activities, including energy metabolism and biosynthesis of nucleotides, fatty acids and amino acids. Mitochondrial morphology is a key factor in dictating mitochondrial functions. Here, we report that the acyl-CoA-binding protein (ACBP) Acb1 in the fission yeast Schizosaccharomyces pombe is required for the maintenance of tubular mitochondrial morphology and proper mitochondrial respiration. The absence of Acb1 causes severe mitochondrial fragmentation in a dynamin-related protein Dnm1-dependent manner and impairs mitochondrial respiration. Moreover, Acb1 regulates the remodelling of lipid droplets in nutrient-rich conditions. Importantly, Acb1 promotes cell survival when cells are cultured in nutrient-rich medium. Hence, our findings establish roles of ACBP in regulating mitochondria, lipid droplets and cell viability.


Assuntos
Inibidor da Ligação a Diazepam , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proliferação de Células/genética , Proliferação de Células/fisiologia , Inibidor da Ligação a Diazepam/metabolismo , Dinaminas/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
15.
Fungal Genet Biol ; 161: 103695, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513256

RESUMO

Being found in all eukaryotes investigated, acyl-CoA-binding proteins (ACBPs) participate in lipid metabolism via specifically binding acyl-CoA esters with high affinity. The structures and functions of ACBP family proteins have been extensively described in yeasts, fungi, plants and mammals, but not oomycetes. In the present study, seven ACBP genes named PsACBP1-7 were identified from the genome of Phytophthora sojae, an oomycete pathogen of soybean. CRISPR-Cas9 knockout mutants targeting PsACBP1 and PsACBP2 were created for phenotypic assays. PsACBP1 knockout led to defects in sporangia production and virulence. PsACBP2 knockout mutants exhibited impaired vegetative growth, zoospore production, cyst germination and virulence. Moreover, Nile red staining of PsACBP2 knockout and over-expression lines showed that PsACBP2 is involved in the formation of lipid bodies in P. sojae. Our results demonstrate that two ACBP genes are differently required for growth and development, and both are essential for virulence in P. sojae.


Assuntos
Phytophthora , Animais , Coenzima A/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Mamíferos/metabolismo , Virulência/genética
16.
J Exp Bot ; 73(9): 2918-2936, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35560189

RESUMO

Acyl-CoA-binding proteins (ACBPs) constitute a well-conserved family of proteins in eukaryotes that are important in stress responses and development. Past studies have shown that ACBPs are involved in maintaining, transporting and protecting acyl-CoA esters during lipid biosynthesis in plants, mammals, and yeast. ACBPs show differential expression and various binding affinities for acyl-CoA esters. Hence, ACBPs can play a crucial part in maintaining lipid homeostasis. This review summarizes the functions of ACBPs during the stages of reproduction in plants and other organisms. A comprehensive understanding on the roles of ACBPs during plant reproduction may lead to opportunities in crop improvement in agriculture.


Assuntos
Arabidopsis , Inibidor da Ligação a Diazepam , Acil Coenzima A/metabolismo , Animais , Arabidopsis/metabolismo , Inibidor da Ligação a Diazepam/química , Inibidor da Ligação a Diazepam/metabolismo , Ésteres/metabolismo , Lipídeos , Mamíferos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Reprodução
17.
FASEB J ; 36(7): e22367, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639422

RESUMO

Diazepam binding inhibitor (DBI)-translocator protein (18kDa) (TSPO) signaling in the retina was reported to possess coordinated macroglia-microglia interactions. We investigated DBI-TSPO signaling and its correlation with vascular endothelial growth factor (VEGF), neurotrophic or inflammatory cytokines in neovascular retinopathy, and under hypoxic conditions. The vitreous expression of DBI, VEGF, nerve growth factor (NGF), and interleukin-1beta (IL-1ß) were examined in proliferative diabetic retinopathy (PDR) patients with or without anti-VEGF therapy and nondiabetic controls. Retinal DBI-TSPO signaling and the effect of the anti-VEGF agent were evaluated in a mouse model of oxygen-induced retinopathy (OIR). Interactions between Müller cell-derived VEGF and DBI, as well as cocultured microglial cells under hypoxic conditions, were studied, using Western blot, real-time RT-PCR, enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunofluorescent labeling. Results showed that vitreous levels of DBI, VEGF, NGF, and IL-1ß were significantly higher in PDR patients compared with controls, which further changed after anti-VEGF therapy. A statistical association was found between vitreous DBI and VEGF, NGF, IL-1ß, and age. The application of the anti-VEGF agent in the OIR model induced retinal expression of DBI and NGF, and attenuated inflammation and microglial cell activation. Inhibition of Müller cell-derived VEGF could increase its DBI expression under hypoxic conditions, while the DBI-TSPO signaling pathway is essential for anti-VEGF agents exerting anti-inflammatory and neuroprotective effects, as well as limiting inflammatory magnitude, promoting its neurotrophin production and anti-inflammatory (M2) polarization in microglial cells. These findings suggest the beneficial effect of anti-VEGF therapy on inflammation and neurotrophy of retinal glial cells through modulation of the DBI-TSPO signaling pathway.


Assuntos
Citocinas , Retinopatia Diabética , Animais , Humanos , Camundongos , Citocinas/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fator de Crescimento Neural/metabolismo , Receptores de GABA/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Corpo Vítreo/metabolismo
18.
Cell Death Dis ; 13(4): 356, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436993

RESUMO

Acyl-coenzyme-A-binding protein (ACBP), also known as a diazepam-binding inhibitor (DBI), is a potent stimulator of appetite and lipogenesis. Bioinformatic analyses combined with systematic screens revealed that peroxisome proliferator-activated receptor gamma (PPARγ) is the transcription factor that best explains the ACBP/DBI upregulation in metabolically active organs including the liver and adipose tissue. The PPARγ agonist rosiglitazone-induced ACBP/DBI upregulation, as well as weight gain, that could be prevented by knockout of Acbp/Dbi in mice. Moreover, liver-specific knockdown of Pparg prevented the high-fat diet (HFD)-induced upregulation of circulating ACBP/DBI levels and reduced body weight gain. Conversely, knockout of Acbp/Dbi prevented the HFD-induced upregulation of PPARγ. Notably, a single amino acid substitution (F77I) in the γ2 subunit of gamma-aminobutyric acid A receptor (GABAAR), which abolishes ACBP/DBI binding to this receptor, prevented the HFD-induced weight gain, as well as the HFD-induced upregulation of ACBP/DBI, GABAAR γ2, and PPARγ. Based on these results, we postulate the existence of an obesogenic feedforward loop relying on ACBP/DBI, GABAAR, and PPARγ. Interruption of this vicious cycle, at any level, indistinguishably mitigates HFD-induced weight gain, hepatosteatosis, and hyperglycemia.


Assuntos
Inibidor da Ligação a Diazepam , Receptores de GABA-A , Animais , Proteínas de Transporte , Coenzima A/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Aumento de Peso , Ácido gama-Aminobutírico
19.
Reproduction ; 163(5): 309-321, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35275842

RESUMO

Decidualization of uterine stromal cells plays an important role in the establishment of normal pregnancy. Previous studies have demonstrated that Acyl-CoA binding protein (Acbp) is critical to cellular proliferation, differentiation, mitochondrial functions, and autophagy. The characterization and physiological function of Acbp during decidualization remain largely unknown. In the present study, we conducted the expression profile of Acbp in the endometrium of early pregnant mice. With the occurrence of decidualization, the expression of Acbp gradually increased. Similarly, Acbp expression was also strongly expressed in decidualized cells following artificial decidualization, both in vivo and in vitro. We applied the mice pseudopregnancy model to reveal that the expression of Acbp in the endometrium of early pregnant mice was not induced by embryonic signaling. Moreover, P4 significantly upregulated the expression of Acbp, whereas E2 appeared to have no regulating effect on Acbp expression in uterine stromal cells. Concurrently, we found that interfering with Acbp attenuated decidualization, and that might due to mitochondrial dysfunctions and the inhibition of fatty acid oxidation. The level of autophagy was increased after knocking down Acbp. During induced decidualization, the expression of ACBP was decreased with the treatment of rapamycin (an autophagy inducer), while increased with the addition of Chloroquine (an autophagy inhibitor). Our work suggests that Acbp plays an essential role in the proliferation and differentiation of stromal cells during decidualization through regulating mitochondrial functions, fatty acid oxidation, and autophagy.


Assuntos
Decídua , Inibidor da Ligação a Diazepam , Animais , Decídua/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Endométrio/metabolismo , Feminino , Camundongos , Gravidez , Pseudogravidez , Células Estromais/metabolismo
20.
Viruses ; 14(3)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35336860

RESUMO

HIV elite controllers (ECs) are characterized by the spontaneous control of viral replication, and by metabolic and autophagic profiles which favor anti-HIV CD4 and CD8 T-cell responses. Extracellular acyl coenzyme A binding protein (ACBP) acts as a feedback inhibitor of autophagy. Herein, we assessed the circulating ACBP levels in ECs, compared to people living with HIV (PLWH) receiving antiretroviral therapy (ART) or not. We found lower ACBP levels in ECs compared to ART-naïve or ART-treated PLWH (p < 0.01 for both comparisons), independently of age and sex. ACBP levels were similar in ECs and HIV-uninfected controls. The expression of the protective HLA alleles HLA-B*27, *57, or *58 did not influence ACBP levels in ECs. ACBP levels were not associated with CD4 or CD8 T-cell counts, CD4 loss over time, inflammatory cytokines, or anti-CMV IgG titers in ECs. In ART-treated PLWH, ACBP levels were correlated with interleukin (IL)-1ß levels, but not with other inflammatory cytokines such as IL-6, IL-8, IL-32, or TNF-α. In conclusion, ECs are characterized by low ACBP plasma levels compared to ART-naïve or ART-treated PLWH. As autophagy is key to anti-HIV CD4 and CD8 T-cell responses, the ACBP pathway constitutes an interesting target in HIV cure strategies.


Assuntos
Inibidor da Ligação a Diazepam , Infecções por HIV , Linfócitos T CD4-Positivos , Citocinas/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Controladores de Elite , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...